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Abstract

We discuss a class of computer/network architectures that supports multilevel security and commercial

applications, while utilizing primarily commercial-off-the-shelf (COTS) workstations, operating systems and

hardware components. We show that a property of these architectures is that, while they are capable of sup-

porting multilevel confidentiality policies, they do not generally support partially ordered integrity policies:

specifically, these architectures do not support the maintenance of data that is higher in integrity than the

integrity level of the COTS components, thus limiting their applicability to processing environments where the

integrity of data is consistent with that of low-assurance software.

1 Introduction

Data integrity is defined as “the property that data has not been exposed to accidental or malicious alteration

or destruction.”[28] A common interpretation is that high integrity information can be relied upon as the ba-

sis for critical decisions. However, the protection of high integrity data in commercial systems has been both

problematic to achieve and often misunderstood.

Integrity is, in many ways, the “dual” of confidentiality. Both integrity and confidentiality policies can be

represented with labels whose relationships form a lattice [41]. Access control policy decisions can be based on

the relative position of labels within a given lattice. Whereas the level of “confidentiality” protection to be applied

to a datum can be taken as a measure of how much harm its unauthorized disclosure would cause the owner, the

required level of “integrity” can be viewed as how much harm would be caused by the unauthorized modification

of the datum. Increasing the confidentiality “level” given to a subject (e.g., user) generally expands the set of

objects that the subject may view; but an increase in integrity will contract the set of objects that a subject

may view. Such semantic “inversions,” and the sometimes non-symmetric nature of integrity and confidentiality

properties can make their differences difficult to reason about ([17] pages 68-71). As a result, the analysis of

integrity may be overlooked or avoided during the system design or acquisition process, in favor of more familiar

confidentiality analyses.



Integrity of code is also closely related to “assurance” and “trust.” Products that have been through security

evaluations [27][3] receive an assurance-level designation. A methodical, high-assurance development process

may produce code with fewer flaws, and consequently, behavior that is closer to that which is intended, than a

low-assurance development process. Suitable security mechanisms and practices must also be in place to ensure

the ability of the system to protect itself and provide continued system integrity during operation. More reliable

code is sometimes called, or labeled, “high integrity;” it is also referred to as, “high assurance” code. Based on

this designation, the product may be deemed suitable for handling data within a certain range of confidentiality or

integrity. Systems or components that have demonstrated capabilities for security policy enforcement are called

“trusted.”

High assurance systems are designed to ensure the enforcement of policies to protect the confidentiality and

integrity of information. The hybrid security architecture systems discussed in this paper are intended to provide

some desired functionality with high assurance of correct policy enforcement by utilizing a combination of high-

assurance and low- assurance components. The purpose of this paper is to shed some light on a subtle aspect of

high-assurance system engineering that has not often been openly addressed by the developers of these systems:

that is, a system can only be trusted to manage data whose integrity is at or below that of its weakest component.

While some developers have indicated that this problem is something “we have always known about,” the problem

may not be fully appreciated by the consumers of these systems. Our premise is that builders and buyers of

systems designed to provide high assurance enforcement of non-discretionary security policies may ignore the

impact of component and architectural choices on the integrity of data that users intend to protect. Although the

problem is exacerbated in systems designed to implement mandatory integrity models, such as the Biba model

[8], it is also significant in systems intended to support confidentiality policies. The former systems have explicit

integrity requirements, whereas the latter may have implicit integrity expectations.

The remainder of this paper is organized as follows. Section 2 provides a brief discussion of some related

efforts involving security and integrity. This is meant to provide a sampling, rather than a comprehensive review

of preceding work, as the area is quite broad. We review concepts associated with confidentiality, integrity, and

high-assurance systems in Section 3. A description of the model hybrid security architecture which we believe

characterizes a variety of modern, distributed, secure system designs follows in Section 4. Section 5 presents the

notion of “system integrity capacity,” and provides a derivation of this capacity for hybrid security architecture

systems. Our conclusions, in Section 6, complete the body of the paper. An overview of requirements for

achieving integrity in AIS components is presented in Appendix A; and a discussion of malicious artifacts in

commercial systems is presented in B.

2 Related Work

Architecture-based integrity problems have been addressed only indirectly in the literature. For example, the

Seaview papers ([12], etc.) make it clear that the reference monitor will enforce integrity constraints on its



subjects, such as the relational database management component; however, they do not explain that the inclusion

of a B1-level RDBMS component in the system will limit the integrity range of data that the system can support.

A key issue to be addressed here is how a system manages writable data. The Biba integrity model includes the

restriction that a subject may modify an object only if the subject’s integrity label dominates the object’s integrity

label. This and related characteristics of the “strict” integrity model are discussed extensively in the literature,

starting with [8].

“Program integrity” [38] is related to strict Biba integrity discussed here, encompassing all of the restrictions

of Biba integrity except for those related to the reading of files, while retaining restrictions for the execution of

files. Strict integrity treats execution as a form of reading, whereas program integrity treats them separately [35].

Program integrity is of interest because it can be enforced with simple ring-bracket mechanisms [37], but since

program integrity “write” restrictions are the same as for Biba integrity, it is not discussed further in this paper.

Amoroso [5] relates evaluation assurance to software integrity, describing a broad range of (integrity) classes

for articulating software trust.

Aspects of this problem were presented to the Workshop on Innovations in Strong Access Control [18], and

were recorded as a technical report [21].

3 Background

This section sets the context for the presentation of the model architecture and its attendant problems. Integrity

is examined in relation to confidentiality, as well as in relation to both data and code. The basic Biba integrity

model is described, and the motivations for development of hybrid security architectures are examined.

3.1 Integrity and Confidentiality

A given piece of information will have a confidentiality value as well as a separate integrity value. That is, there

will be separately measurable effects (e.g., harm to the information owner) from the leakage vs. the corruption

of the information. This is the case whether or not the data has been explicitly labeled with confidentiality and

integrity values (as is done in a multilevel-secure system).

Confidentiality and integrity policies may not be clearly differentiated in complex computer systems. In the

military sector, secret information is often treated as reliable. Intelligence information of both high and low

integrity is often handled as highly classified. Sometimes, classification is related to sources and methods. If the

information is disconnected from its source, confidentiality may not be required, but a means of attesting for the

reliability of the information may be needed.

In the simplest case, the confidentiality and integrity values are binary, high/low secrecy and high/low integrity,

where high and low are in relation to the usual notion of a dominance relationship for comparing relative levels



of integrity. The values may be applied to information in different combinations, as show in the following

examples:

� High Confidentiality and Low Integrity: for example, potentially critical information from an unreliable

source. This type of (e.g., intelligence community) information may be held in strict confidentiality pend-

ing confirmation by a more reliable source.

� Low Confidentiality and High Integrity: for example, selected well established facts. The Oxford English

Dictionary is considered to be a highly reliable (and definitive) source for definitions of words used by

English speaking peoples.

� Low Confidentiality and Low Integrity: for example, the boasts of the children on the playground, or stock

tips on an internet chat line.

� High Confidentiality and High Integrity: for example, trade-secret formulas, such as those used by chem-

ical companies, recipes for a fast food vendor’s “secret sauce” or the closed source code of a software

vendor that provide specific functionality.

3.2 Data and Code

Integrity values may be associated with executable software (e.g., programs, code, code modules, components) as

well as with passive data. In both cases the integrity level relates to how well the data or program corresponds to

an ideal (e.g., original value or “as-shipped” image). For programs, integrity also describes how well a program’s

behavior corresponds to some ideal behavior (e.g., documented functionality), including the notion that the code

does not provide functionality beyond that ideal (viz, contain hidden behavioral artifacts). So in our example

above, of high confidentiality, high integrity closed source code of a software vendor, “integrity” refers to the

level of its protection as data. As executable code, its level of integrity might be either high or low.

3.3 Integrity Model

The Biba model [8] describes an integrity policy that ensures the protection of high integrity entities (subjects

and objects) from corruption. Such corruption can take different forms:

� A high-integrity subject reading or executing a low-integrity object (resulting in corruption of the subject’s

behavior).

� A low-integrity subject writing to high-integrity object (resulting in corruption of the high-integrity data).

Thus, a low integrity subject can always execute a high integrity program or read high integrity information, or

write to low integrity objects, but a proper implementation of integrity policy will prevent the corruptions listed

above. This can be expressed as follows.



Given the set S of active subjects and the set O of passive objects:

� s � S� o � O�

currentaccess�s� o� read� j currentaccess�s� o� execute�

� dominates�integrity�o�� integrity�s��

�

currentaccess�s� o� write�

� dominates�integrity�s�� integrity�o���

In some systems, the confidentiality and integrity values for an object are combined into a single “access class”

or label, as found in the GEMSOS model [30]. This model reflects the finding by Denning that all mandatory

policies can be described using a lattice model where access classes are partially ordered [13]. Here, the separate

confidentiality and integrity lattices are combined into a single “access class” lattice, and combined confidential-

ity/integrity access control decisions can then be based on comparisons of points (e.g., subject label and object

label) on the combined lattice.

3.4 High Assurance Systems

In certain automated information system (AIS) environments, it is required that critical security policies be en-

forced with a high degree of assurance. The evolution of high-assurance systems can be seen to follow that of

traditional computer architectures, from monolithic stand-alone machines [16, 37], to tightly-coupled distributed

systems [36], to fully-distributed architectures, [42].

Early developments of high assurance systems demonstrated that they are both expensive to produce and are

difficult to make compatible with commonly used (e.g., office productivity) applications. Examples include

Blacker [42], various NATO multilevel projects, etc. These were custom-built systems that resulted in drawn-out

programs and mutual incompatibility.

The “TCB subset” approach [28, 39] allows the allocation of separate policies, such as mandatory and discre-

tionary access control, to separate and distributed components, and supports the separate evaluation of compo-

nents, such that they can be composed into systems without necessarily re-evaluating all of the sub-components.

The balanced-assurance approach [29], as depicted in Figure 1, was introduced with the hope of reducing the

expense of producing high-assurance systems, primarily by reducing the evaluation costs associated with less

critical components. That is to say, low assurance components are combined with high assurance components to

produce systems exhibiting high assurance with respect to the more critical of their security policies.

Similarly, the use of COTS components in government and military RFPs has become ubiquitous, even in

requests for systems to handle sensitive information, at least partially in response to the problem of budgetary

limitations in the modern economic era. Often, the use of COTS components is perceived to result in lower user

training costs and an increase in interoperability between diversely developed systems.
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Figure 1: Balanced Assurance

The combination of the balanced assurance approach, COTS components, and fundamental multilevel security

requirements motivated the development of various hybrid security architectures, discussed below.

4 Hybrid Security Architectures

In this section, we describe the Hybrid Security class of architectures, members of which are composed of a com-

bination of low-assurance commercial components and specialized (e.g., high-assurance) multilevel components,

and that are intended to enforce mandatory security policies while supporting unmodified COTS productivity ap-

plications. This class is characterized as architectures consisting of the following components:

� COTS terminals or workstations

� COTS user interfaces, applications and application servers

� Storage devices containing multiple levels of data

� Multilevel-management components



� TCB Extensions

� COTS network interconnections

where the components and their relationships are described as follows.

COTS Terminals or Workstations support client applications in relation to a local or physically-remote

server component. Each terminal/workstation is configured to operate at a single user security level at a time

(thus differentiating them from multilevel workstations or compartmented mode workstations). A characteristic

of some COTS1 Terminals and Workstations is that they are purged of all user data between user sessions at

different security levels in order to achieve object reuse objectives, e.g. [27].

COTS User Interfaces, Applications and Application Servers COTS system applications provide useful

user-level functionality, such as office productivity programs and database management services. Application

servers may provide system application functionality to local or remote (e.g., “thin”) clients. User interface

applications translate user requests to the system application. System applications may be modified to be “multi-

level aware” in their interactions with the Multilevel Management Component, such that they can return advisory

markings to clients (user interface applications), or they can be purely single level [19].

Storage Devices may be storage disks or other media, the collection of which are capable of storing more than

one security level of data. For some approaches, multiple levels of data are stored on the same disk, while in

others there is one level per disk. Typically, the disks and disk controllers are commercial products, but we have

seen proposals for multilevel disk controllers (see Multilevel Management Components, below).

Multilevel Management Components are “trusted” servers, operating systems, or device managers, and

any attendant hardware. These components, sometimes called reference validation mechanisms (RVM), are

interposed between clients or applications and storage media such that all communications and data flowing

between the client workstation and the storage media passes through the Multilevel Management Component.

The management software is responsible for enforcing mandatory and other policies with respect to data on the

storage media. In a subset of the architectures under consideration, the management software will support the

ability to “read down” from a user session at a high confidentiality level to data at a lower level(s), or write down

from a session at a high integrity level.

Data at different security levels can be separated logically or physically. In logical approaches, multilevel

managers ensure that requests for data are always bound to a particular security level and that policy enforcement

is correctly applied to data access requests. Naturally, one form of multilevel manager is a full-blown high

assurance trusted computing base incorporating a multilevel security kernel. Alternative managers could provide

more limited functionality. In the case of physically separate single-level storage devices, a multilevel component

1In this report,“COTS” means a commercial product that has not been evaluated or has been evaluated below the class of B2/EAL5 (as

there have been few, if any, commercial applications evaluated at B2 or higher, we consider this to be a conservative, non-exclusionary,

definition).



might ensure that data access requests are shunted to the appropriate device. Clearly, not all architectures relying

upon physical separation of storage media will be able to support read down functionality.

TCB Extensions. When components are separated from the Multilevel Management Component by network

connections, there may be a “TCB extension”2 associated with the component to reliably identify the compo-

nent and its session level to the Multilevel Management Components, as well as to reliably manage end-to-end

encryption, if that capability is provided.

Network Connections are logically or physically separate single-level “wires” between other components. In

some cases they may multiplex transmissions at different security levels onto the same physical medium. Cryp-

tography can be used to protect and separate information at various levels during transmission. Often different

cryptographic keys are used for different levels.

4.1 Example Architectures

In this section we describe several instantiations of the hybrid security architecture. Note that we make no

judgment or representation as to the adequacy of systems built to these architectures to enforce their declared or

implied security policies.

A non-distributed instantiation of the model architecture is shown in Figure 2. In this layout, the component

interconnections consist of process-internal communications. The lowest layer (viz, “ring”) of the process is a

multilevel kernel or operating system, with an application (e.g., multilevel-aware RDBMS) and user interface in

higher layers. A separate process is created for each security level. An example of this version of the architecture

is that of the Seaview project [14, 25], and “Purple Penelope” [33] (the latter includes a degenerate case of

a Multilevel Management Component). A variation on this theme is the trusted VMM architecture, in which a

separate version of the OS, in addition to the application and user interface, is created at each security level[22, 7],

and multilevel management occurs below that in the VMM layer.

A simple distributed instantiation is shown in Figure 3. Here, there are logically separate single-level work-

stations connected by a switch to data management subsystems at different (single) levels. Software associated

with the switch may act to ensure that the current level of the workstation matches the level of data subsystem

indicated by the switch setting. An example of this version of the architecture is that of the Starlight project

[6] (Starlight may allow low confidentiality information to flow through the switch to high sessions, providing

“read-down” capability).

The third instantiation of the model architecture is shown in Figure 4. In this layout, there are logically separate

single-level terminals (multiplexed onto one physical terminal by purging of state between session-level changes)

2A “Trusted Computing Base” (TCB) consists of the protection mechanisms of a computer system responsible for enforcing a security

policy. A “TCB Extension”[10] is one or more such protection mechanisms that exist on a remote component, thus “extending” the

functionality of the TCB.



Figure 2: Single Process Architecture. (Network Connections are degenerate.)

connected via TCB extensions to multilevel-aware application server(s) and thence to the multilevel component.

An example of this version of the architecture is that of the MLS LAN project [20].3

5 System Integrity Capacities

In this section, the notion of system integrity capacity will be introduced. This term relates to the ability of a

system to handle high-integrity data.

Multilevel systems partition data into domains that are identified by security labels. Data of different sensi-

tivities is stored in different partitions, such that some partitions are “more sensitive than,” “more trusted than,”

or “dominate” other partitions. The dominance relation thus forms a lattice with respect to the labels/partitions

(assuming the existence of labels for universal greatest lower bound, GLB, and universal least upper bound,

3In the MLS LAN design, the terminals would be equipped with a plug-in hardware component that is used to establish a trusted path

from the user to a high assurance multilevel component on the network. The trusted path is used for user identification and authentication

as well as session level negotiation. Once the session has been established, the workstation operates at a single, negotiated, security level

[20]



Figure 3: Switch-Based Architecture.

LUB). A reference validation mechanism (RVM, see “multilevel management component” in Figures 2, 3 and

4), mediates access to objects, controlling object creation, storage, access and I/O, thereby preventing data leak-

age across MAC partitions. For confidentiality enforcement, a subject’s (e.g., program or component’s) ability

to write-down or read-up is prevented with respect to the dominance relationship on confidentiality labels; for

integrity, read-down and write-up are prevented with respect to the dominance relationship on integrity labels.

Most multilevel systems today are designed to enforce confidentiality constraints. Some, but not all, multilevel

systems are designed to constrain flow between integrity domains.

The network architecture of a multilevel system can help to ensure that the actions of other components

are constrained by its RVM, for example, through limiting the interconnections or data paths allowed between

components. In the architectures discussed in this paper, the separation of data is maintained by either: (1)

partitioning the data (and processing elements) into distinct physical domains and using the RVM to ensure that

the security level of the user session matches the security level of the domain with which it is connected (e.g.,

Figure 3), or (2) using the RVM to logically separate the different data domains and to match the user session

level to only the appropriate domain(s) (see Figures 2 and 4).

The central question in this paper is, “For what range of data can we trust such a multilevel system to maintain

data separation?” Clearly, we would not want to trust a very weak system to protect/separate very highly sensi-

tive information. While our focus is on integrity-related issues, for comparison we will examine cases of both

confidentiality and integrity.



Figure 4: Distributed Multilevel Server Architecture

5.1 Confidentiality Capacity

For confidentiality, a multilevel system can be trusted to manage data to the confidentiality range of its RVM.

We call this the system confidentiality capacity. For example, if the system’s RVM component is assigned or is

otherwise deemed capable of managing a range from Unclassified to Secret, we can say the system as a whole

is trusted to handle data in that range, since the RVM will constrain the actions of the other components to not

leak data across domains, regardless of the level of trust we have in those other components (given a coherent

network architecture). To state confidentiality capacity more formally, consider a system, C , comprising a set of

components, fcg, and let RVM be a component in C . Then,

c capacity�C� � c capacity�RVM�

The “Yellow Book”[26] is an example of a scheme for assigning such confidentiality ranges based on the

evaluation or assurance level of the components involved, where higher assurance components are allowed to be

associated with greater confidentiality ranges.

5.2 Integrity Capacity

For integrity, on the other hand, a system can be trusted to manage data (only) to the integrity limit of its

least-trusted “data-modifying” component. This is the “system integrity capacity.” The reason this definition



is different from the definition for system confidentiality capacity is that in addition to being concerned with the

leakage of information across integrity domains, integrity enforcement has another semantic requirement, which

is that the allowed (e.g., intra-domain) modifications must be the correct, intended, modifications. This reflects

the fact that all executable components and code modules have an inherent or explicit integrity value relating to

their faithfulness to ideal design objectives. So, we “trust” that a component will handle modification of objects

correctly, (only) to its implicit or explicit level of integrity/assurance.

We will introduce Cmod, as the subset of components in system C that are able to modify user data. The

integrity capacity, i capacity, of the system can be described as follows:

i capacity�C� �
GLB
c � Cmod

�
integrity�c�

�

Proof Sketch4

There are two cases to examine regarding the definition of system integrity capacity: systems that do and

systems that do not explicitly enforce an integrity policy based on integrity labels.

Axiom

A modified datum takes on the integrity of the GLB of the inherent integrities of the original datum and the

data-modifying component.

� c � Cmod � o � O � modify�c� o� � integrity�o�� � GLB�integrity�c�� integrity�o��

For example, if a “certified” datum is modified by an “untrusted” code component, the modified datum be-

comes “untrusted,” assuming that “certified” dominates “untrusted.”

Case One

If the system does not enforce integrity, then it is the case that the system can take in data of any integrity

level, including data of higher integrity than the inherent integrity of the overall system. The data is handled and

managed by different system components, forming a path of components between the user (or decision-making

application, in the absence of a user) and the data store. We will call such components that have the capacity to

modify or control the modification of user data, “data-modifying” components. From the Axiom, for each data-

modifying component along the path, the data will take on an inherent integrity value equal to the integrity GLB

of the data input to that component and of that component. By extension, no matter what the intitial integrity of a

datum that enters such a system may be (integrity�o�), it will emerge from the system with a de facto integrity

value no higher than the integrity of the least-trusted data-modifying component:

�c � Cmod � dominates�integrity�c�� integrity�o���

Case Two
4A more formal presentation of this argument involves a mathematical representation of “path” and “data modifying component”

based on the use of trace notation. For the sketch presented here, this level of detail is not critical.



If the system enforces integrity, when a component accesses an object for the purposes of modification (e.g.,

creation, deletion, append), the RVM enforces this rule: the integrity label of the subject (component) must

dominate the integrity label of the object (no integrity “write up”). This rule is enforced for each data-modifying

component in the system (alternately, the whole system could be labeled with the integrity GLB of all of the

data-modifying components, and the rule enforced once upon entry of the object to the system, and reflected

as the upper limit on the integrity label applied to objects leaving the system). Thus, the system will only be

able to accept5 objects with integrity labels no higher than (i.e., dominated by) the integrity of the least-trusted

data-modifying component (again, leading to the definition of system integrity capacity):

accept�C� o� � �c � Cmod � dominates�integrity�c�� integrity�o��

�

For objects intentionally upgraded above the level of the either the component or the existing data, we would

apply the logic of Case 1. An example of such an upgrade might be the transition of software from “development”

to “production”.

This leaves the question of correct integrity labeling of components, such that the system integrity capacity can

be accurately enforced or inferred. Confidentiality and integrity labels of passive data objects may be assigned

based on the data owner’s perception of the object’s sensitivity (e.g., harm caused by unauthorized disclosure or

modification). As discussed, the confidentiality range of active components (e.g., code modules) can be assigned

based on the guidance of the “Yellow Book.” Unfortunately, there is no “Yellow Book” for integrity, to show what

integrity label should be allowed or inferred for a code component based on its evaluation/assurance level. System

developers and integrators must use their best judgment to assign integrity labels to code. Usually integrity

labels, as well as confidentiality labels, are assigned by the system designer to maximize system functionality

while being consistent with the principle of least privilege [34]. However, the pedigree of the code establishes a

real-world limit to the integrity label that can be associated with a component. Intuitively, code that has unknown

integrity characteristics, e.g., it is found on the street, cannot be accorded a high-integrity label – otherwise,

data leaving such a system might have an inaccurately high integrity value, as reflected in its actual or inferred

integrity label.

5.3 COTS Component Integrity

Hybrid security architecture COTS components are of particular interest with respect to correct integrity labeling.

Recall that we define COTS components to have been either unevaluated with respect to security policy enforce-

ment, or evaluated below Class B2/EAL5. In the security and evaluation community, B2/EAL5 is considered to

be the dividing line between high and low assurance systems. Components evaluated below B2/EAL5 are “low

assurance” (see, for example, [23] This is so for several reasons [27, 3]:

5We assume that an object is accepted by the system only if it is accepted by all of the components in Cmod.



� Weak developmental assurance, for example to ensure that Trojan horses are not inserted during manufac-

ture. There is no or very little requirement for system configuration management. There is no requirement

for configuration management of development tools.

� Little or no code analysis, and no examination of code for Trojan horses, after manufacture (i.e., during

evaluation). There is no requirement for code correspondence6 to the system specification or for justifica-

tion of non-policy-enforcing modules. There is no requirement for internal structure (e.g., modularity or

minimization) which would enable the meaningful analysis of code functionality.

� Weak assurance that Trojan horses are not inserted after manufacture. There is no requirement for trusted

distribution procedures: no assurance that the system delivered to the end customer is in fact the intended

or specified system.

Recall that an integrity label is an indication of how well a component’s behavior corresponds to an ideal

(e.g., specified) behavior. The fact that there is little assurance that code that has been evaluated below B2/EAL5

functions (only) the way it is supposed to, indicates that there must be a corresponding limit as to how high of

an integrity label can be associated with such code (see Appendix B). We will call this integrity limit, nominally,

“low assurance,” and assert that components evaluated below B2/EAL5 should be labeled at this, or some lower

level. Similarly, code that has not been evaluated at all would be attributed with a (nominal) “no assurance”

integrity label. The names of these two labels are not significant; rather, it is significant to the enforcement of

integrity policies in hybrid security architecture systems that site security managers/administrators, data owners,

and other security policy “stakeholders” understand the integrity semantics of these labels, and that the integrity

labels for their data objects have suitable dominance relationships to the integrity labels of the system compo-

nents.

5.4 Integrity in Hybrid Security Architectures

Based on the preceding discussion, the system integrity capacity of hybrid security architecture systems can be

summarized as follows:

� A system’s integrity capacity is the GLB of the integrity of its data-modifying modules.

� COTS components are generally data-modifying. The general functionality of COTS applications such

as word processing, spread sheet, presentation, time management, and database tools indicate that, to be

useful, they are intended to modify, as well as read, data.

� COTS components are of “no assurance” or “low assurance” integrity.

6Mapping of each specified function to the code that implements it, and accounting for unmapped code.



� Hybrid security architecture systems use COTS components on the data “path”. By definition, the user

interface and applications of hybrid security architecture systems are provided by COTS components, and

all user data passes through these components.

� Therefore, the system integrity capacity of a hybrid security architecture system is generally no higher than

“no assurance” or “low assurance,” the exception being when all of the COTS components in the hybrid

security architecture system can be assured to not modify data.

An implication of this conclusion is that hybrid security architecture systems are not suitable for automated

information processing environments in which there are expectations or requirements to maintain data integrity

above the nominal “no assurance” or “low assurance” level.

6 Conclusion and Discussion

We have shown that the integrity of a computer system’s code modules limits the data integrity “capacity” of the

system. We have hypothesized that this information about system integrity capacity may not have been clearly

disseminated in the past. The motivation for this paper is to record that information.

We have discussed why COTS components should not be attributed with integrity properties above a certain

“low-assurance” level, and that hybrid security architecture systems should not be trusted with data whose in-

tegrity is above that level. An implication from this conclusion is that hybrid security architecture systems are

not applicable in computing environments where there is an expectation of maintaining data integrity above this

basic, low-assurance level.

Situations where corrupted data could have significant consequences are:

� A legal setting where the “truth” of data might be questioned,

� Handling of high integrity intelligence data for critical decision making, and

� The production of high assurance system components.

We have concentrated in this presentation on issues of integrity in multilevel secure systems, however, the

distinctions we have made may be germane to other systems where weak integrity components are utilized and

stronger data integrity is expected.

One might ask if high integrity is ever achievable. The answer is yes, but not with the “no assurance” COTS

components as they are available today (viz, where COTS implies weak integrity of software functionality).

Systems that could provide high integrity today are (1) a system composed entirely of high-assurance compo-

nents, or (2) a system that hides data from modification by all but high-assurance components. Examples of

the first are evident in systems intended to perform safety-critical functions such as avionics and certain medical

systems[24]. An example of the second is a client-server system composed of high-assurance client and server



components that encrypt their communication such that it is protected from modification during transit (e.g., via

a Virtual-Private-Network-style connection).
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A Production Techniques for High Integrity Components

A high-integrity component, one capable of performing its described function to a high degree of certainty,

must be implemented properly and be free of subversive artifacts. That is to say, the component must not only

do what it is supposed to do, it must not do anything else either. Various approaches exist for ensuring these

characteristics, including: (1) post development testing; (2) abstract process certification such as the Capability

Maturity Model [2, 32] and ISO 9001 [1]; and (3) rigorous engineering processes. There is ample evidence that

testing alone is insufficient to ensure against malicious artifices [15]. The abstract certification approaches are

not specific to producing high integrity components (although they can be used to manage a rigorous engineering

approach), so they are not discussed further.

Under the managed engineering approach, the system hardware and software components are:

1. thoroughly documented with respect to functionality and correct use

2. critically tested with respect to documentation

3. critically examined in source form with respect to documentation

4. under strict configuration management throughout the product life-cycle

5. delivered to users with evidence of non-tampering, and with tools for verifying continuing integrity

6. produced with high assurance development tools7

This process appears to be sufficient to ensure the integrity of components to perform their function to the

current state of the art. Note, that various government-sponsored security evaluation criteria [27, 3] award cer-

tifications to software systems for achieving increments toward these goals. [27] provides extensive supporting

rationale for its requirements; the following is a brief overview of some of this rationale.

To understand the behavior of, and have confidence in the pedigree of COTS software, one must both test

the software to validate that it behaves the way it is documented (see items 1 and 2) and examine its code in

conjunction with the specifications to verify that its design supports its function and that it is not encoded to do

anything else (items 1 and 3). Functional minimization as well as code modularity aid in the latter. Additional

assurance against malicious artifacts is provided by the maintenance of strict configuration control, such that all

changes to the software are accounted for and related to documentation during the lifetime of the software (items

1 and 4).

Finally, a mechanism must be in place to ensure that the delivery of software from the vendor to customers does

not provide opportunities for the modification, and thus subversion, of the code (item 5). This mechanism can

7High assurance hardware components and development tools are generally considered to be beyond the current state of the art in the

development of computer systems.



range from the use of couriers to various automated techniques. A robust, high integrity public key infrastructure

can facilitate the trustworthy delivery of software. For example, certified public keys can be used to provide

digital signatures so that both the source and the integrity of electronically transmitted software components can

be verified.

Overall, these items provide assurance regarding component integrity from product design through creation

and maintenance phases, as well as from manufacture through component delivery. Of course, in the end, the

product must be used correctly (installed, configured, administrated and operated) to perform correctly, and the

procedures for proper use must be clearly documented (see item 1, above), and rigorously followed. Likewise, a

system must have a suitable security design to be able to protect itself and maintain its integrity during operation.

B Subversive Artifacts in Commercial Software

There is clear evidence that subversion of commercial software through hidden entry points (trap doors) and

disguised functions (Trojan horses) is more common than generally perceived. Entire web sites [4] are devoted to

describing clandestine code which may be activated using undocumented keystrokes. Frequently this code merely

displays an animated list of the software developers’ names. Sometimes the effects are extremely elaborate as in

the case of a flight simulator embedded in many versions of the Microsoft Excel Spreadsheet software. That these

Easter Eggs are merely the benign legacy of the programming team is perhaps a reflection of the general good

intentions of the programmers. Malicious insertions, such as long-term time bombs, are just as easily possible.

An indication of the serious nature of the problem was provided in April 2000 when news reports created a

mild hysteria surrounding the possibility of a trapdoor in the code of a widely used web server[31]. Subsequent

investigations revealed that instead of a trapdoor, the code contained nasty remarks about corporate competitors

and well as violations of company coding standards[11]. The fact remains, however, that when rumors of the

trapdoor were initially published, few believed that artifices of this type were possible in such a popular software

product. (Millions of users do not eliminate the problem of low integrity.) Another example of the vulnerability

of commercial source code occured in October 2000, when it was revealed that outsiders had access to the

development environment of a major software vendor for some period of time[9].

In his Turing Prize Lecture, Ken Thompson described a trapdoor in an early version of the Unix operating

system [40]. The cleverness of the artifice was evident in that the artifice was said to have been inserted into

the operating system executable code by the compiler, which had been modified so that recompilations of the

compiler itself would insert the trapdoor implantation mechanism into its executable while leaving no evidence

of the trapdoor in either the source code for Unix or the source code for the C-language compiler. The presence

of this sort of trap door is speculative in any compiler and must be addressed through life-cycle assurance for any

compiler chosen for high assurance system development.
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